We used a simple two-stage tactic to design and synthesize a magnetically separable catalyst (MSC) Ag/Fe3O4 by combining independently synthesized Fe3O4 and Jatropha curcas root functionalized Ag nanoparticles (NPs) at room temperature. The phase composition of Ag/Fe3O4 NCs was revealed by morphological and structural assessment. The derived Ag/Fe3O4 nanocomposites demonstrated outstanding antimicrobial activity against Gram-negative Pseudomonas aeruginosa comparing to Gram-positive Bacillus subtilis which was determined by the agar well diffusion method. This is due to positively charged surface of metal oXide NPs that may bind to cell membrane. Interestingly, Ag-Fe3O4 NCs demonstrated good photocatalytic activity for organic dye degradation. According to a kinetic study, Ag/Fe3O4 MSC removed 98.9% of Rhodamine B at a rate constant of 1.89 min-1. The photoelectron could perhaps ultimately collide only with dissolved solids in the substrate to form superoxides, which can damage the dye. Notably, the MSCs reusability was tested using magnetic detachment without sacrificing photocatalytic efficiency. This finding represents a significant breakthrough in the domain of wastewater treatment and biomedicine.
Copyright information
© Integrated Publications.